Luis Beltran

Information & Communications Technology

Azure Mobile Development Enterprise Architecture

Zlín, Czechia

Transfer Learning en Deep Learning utilizando TensorFlow & ML.NET

Transfer Learning es una técnica de Machine Learning en la que un modelo desarrollado inicialmente para una tarea específica sirve ahora como punto de partida para otro modelo en una segunda tarea más general. Es bastante útil en Deep Learning, ya que los recursos informáticos y de tiempo son limitados, por lo que un modelo previamente entrenado se puede utilizar como entrada para una tarea de procesamiento de lenguaje natural o visión por computadora.

Demostremos cómo funciona Transfer Learning en ML.NET explorando el siguiente escenario:

- En primer lugar, se incorporará un modelo de ML pre-entrenado Inception (TensorFlow) en un flujo de trabajo ML.NET.

- Luego, Transfer Learning se aplica a este modelo utilizando la API de clasificación de imágenes ML.NET para crear un nuevo modelo de Machine Learning personalizado que identifica categorías de imágenes. Todo el conocimiento adquirido al resolver el problema de clasificación inicial es útil para reducir el tiempo de entrenamiento y resolver una segunda clasificación.

- Si el tiempo lo permite, podemos implementar este modelo en una API web para su consumo desde otra aplicación (como una aplicación móvil)


Luis Beltran

Microsoft MVP

I'm a Microsoft MVP in Developer Technologies and AI. I am currently pursuing a PhD in Engineering Informatics at Tomas Bata University in Zlin, Czech Republic.

I've been developing .NET apps for +10 years. I find C# a really powerful language which allow us to create different kinds of software. I focus on mobile apps (Xamarin), cloud computing (Azure) and AI.

I enjoy sharing my knowledge with others.

Luis's full speaker profile