Session

QA for AI systems

Trust is mission-critical for any technology, so if AI solutions are to supplant software, AI must reach the reliability standards currently expected from software. For that to happen, a new field of MLOps engineering has branched off from the DevOps. Also, Explainable AI (XAI) will be more widely adopted since it provides the toolset to interpret machine learning predictions and scrutinize metrics. To ensure increased reliability, and robustness new roles for Machine Learning Quality Assurance will appear likely within DevOps, SecOps, and MLOps teams, but also the roles of data scientist and Machine Learning engineer will evolve

We will examine examples and discuss how they can revolutionize the way we train, but most importantly evaluate and deploy machine learning models with examples from the agribusiness industry, and the digital agronomy field.

Serg Masis

Lead Data Scientist, Syngenta ● Bestselling Author of ML/AI books

Raleigh, North Carolina, United States

Actions

Please note that Sessionize is not responsible for the accuracy or validity of the data provided by speakers. If you suspect this profile to be fake or spam, please let us know.

Jump to top