Session

Memory Optimizations for Machine Learning

As Machine Learning continues to forge its way into diverse industries and applications, optimizing computational resources, particularly memory, has become a critical aspect of effective model deployment. This session, "Memory Optimizations for Machine Learning," aims to offer an exhaustive look into the specific memory requirements in Machine Learning tasks, including Large Language Models (LLMs), and cutting-edge strategies to minimize memory consumption efficiently.
The talk will focus on memory-saving techniques such as data quantization, model pruning, and efficient mini-batch selection. These techniques offer the advantage of conserving memory resources without significant degradation in model performance.

Tejas Chopra

Senior Software Engineer, Netflix

San Jose, California, United States

Actions

Please note that Sessionize is not responsible for the accuracy or validity of the data provided by speakers. If you suspect this profile to be fake or spam, please let us know.

Jump to top